13 Proportionnalité

13-01 Notion de proportionnalité

_	,		• . •		
ı	Atı	n	11	\mathbf{a}	n
ப	éfi		ILI	u	

On appelle grandeur une notion mesurable.

Ex	emples				
•	La masse est une dont la mesure s'exprime en				
•	La taille est une grandeur dont la s'exprime en				
•	La est une grandeur dont la mesure en km/h.				
•	n'est pas une grandeur : on ne peut pas				
	Définitions				
	La proportionnalité est le nom d'une situation dans laquelle deux grandeurs évoluent au même				
	rythme, par multiplication ou division.				
	Chacune des deux grandeurs est alors proportionnelle à l'autre.				
Ex	emples				
•	La masse de tomates est au prix que l'on paye.				
•	Un prix en dollars est proportionnel à un				
•	Le périmètre d'un carré est proportionnel à				
•	À vitesse constante, la est proportionnelle à la durée du déplacement.				
Re	marques				
•	Pour savoir si deux grandeurs sont proportionnelles, il suffit généralement de se demander si le				
	doublement de l'une entraîne				
	Exemple : Si ma voisine achète deux fois plus d'essence que moi, alors elle paie				
•	La vitesse et la durée de déplacement sont des grandeurs inversement proportionnelles.				
	L'augmentation de l'une entraîne				
	Exemple : En marchant pour aller à l'école, je mettrai deux fois moins de temps.				

13-01 Applications du cours

Application 1

Parmi les notions suivantes, lesquelles sont des grandeurs ? Préciser une unité de mesure.

a] la beauté d] la vitesse g] le volume sonore

b] les périmètres e] la colère h] l'intelligence

c] les aires f] la masse i] la force d'un piment

Application 2

Dans chacune des situations suivantes, écrire quelles sont les grandeurs proportionnelles.

- 1. Charlotte a 24 ans et mesure 1,72 m. Elle achète un rôti de porc de 754 g à 14,2 € le kilogramme.
- 2. Thibaut roule pendant trois heures sur l'autoroute. Il parcourt 320 km et, tandis que la température extérieure est 13°C, il fait 26°C à l'intérieur du véhicule.
- **3.** La distance entre Paris et Marseille est 661 km à vol d'oiseau, 775 km en voiture, 810 km à vélo et 41 cm quand je la mesure avec une règle sur mon plan.

Application 3

- 1. Un kangourou fait 4 bonds en 6 secondes. En combien de secondes fait-il 10 bonds ?
- 2. Un champ rectangulaire a une longueur de 80 m et une aire de 3200 m². Quelle est la longueur d'un champ rectangulaire dont l'aire et la largeur sont deux fois plus petites que celles du premier champ ?
- **3.** Jacques a dix poules. Cinq de ses poules pondent un œuf chaque jour. Les cinq autres pondent un œuf un jour sur deux. Combien d'œufs pondent les dix poules en dix jours ?
- **4.** 6 élèves kangourous copient 6 lignes en 6 minutes. S'ils copient tous et toujours au même rythme, combien faudra-t-il d'élèves kangourous pour copier 100 lignes en 100 minutes ?
- **5.** Un train de 200 mètres de long roule à 200 km/h et traverse un tunnel de 200 mètres de long. Combien de temps mettra-t-il pour passer entièrement dessous ?